Fibonacci Heap

I den här handledningen lär du dig vad en Fibonacci Heap är. Du hittar också exempel på olika operationer på en Fibonacci-hög i C, C ++, Java och Python.

Fibonacci heap är en modifierad form av en binomial heap med mer effektiva heapoperationer än den som stöds av binomial och binär heaps.

Till skillnad från binär hög kan en nod ha mer än två barn.

Fibonacci-högen kallas en Fibonacci- hög eftersom träden är konstruerade på ett sådant sätt att ett träd av ordning n har åtminstone Fn+2noder i sig, var Fn+2är (n + 2)ndFibonacci-numret.

Fibonacci Heap

Egenskaper för en Fibonacci-hög

Viktiga egenskaper hos en Fibonacci-hög är:

  1. Det är en uppsättning min högt beställda träd. (dvs. föräldern är alltid mindre än barnen.)
  2. En pekare hålls vid minsta elementnoden.
  3. Den består av en uppsättning markerade noder. (Minska tangentfunktionen)
  4. Träden i en Fibonacci-hög är oordnade men rotade.

Minnesrepresentation av noderna i en Fibonacci-hög

Rötterna till alla träd är sammanlänkade för snabbare åtkomst. Barnnoderna till en föräldernod är anslutna till varandra via en cirkulär dubbelt länkad lista som visas nedan.

Det finns två huvudfördelar med att använda en cirkulär dubbelt länkad lista.

  1. Att ta bort en nod från trädet tar O(1)tid.
  2. Sammankopplingen av två sådana listor tar O(1)tid.
Fibonacci Heap Structure

Verksamhet på en Fibonacci-hög

Införande

Algoritm

 infoga (H, x) grad (x) = 0 p (x) = NIL barn (x) = NIL vänster (x) = x höger (x) = x markera (x) = FALSE sammanfoga rotlistan som innehåller x med rot lista H om min (H) == NIL eller tangent (x) <tangent (min (H)) då min (H) = xn (H) = n (H) + 1 

Att infoga en nod i en redan existerande hög följer stegen nedan.

  1. Skapa en ny nod för elementet.
  2. Kontrollera om högen är tom.
  3. Om högen är tom, ställ in den nya noden som en rotnod och markera den min.
  4. Annars, sätt in noden i rotlistan och uppdatera min.
Insättningsexempel

Hitta min

Minsta elementet ges alltid av minpekaren.

Union

Föreningen av två Fibonacci-högar består av följande steg.

  1. Sammankoppla rötterna till båda högarna.
  2. Uppdatera min genom att välja en miniminyckel från de nya rotlistorna.
Förening av två högar

Extrakt Min

Det är den viktigaste operationen på en Fibonacci-hög. I den här åtgärden tas noden med minsta värde bort från högen och trädet justeras om.

Följande steg följs:

  1. Ta bort min-noden.
  2. Ställ minpekaren till nästa rot i rotlistan.
  3. Skapa en matris med storlek som är lika med den maximala graden av träd i högen innan du tar bort den.
  4. Gör följande (steg 5-7) tills det inte finns flera rötter med samma grad.
  5. Kartlägg graden av aktuell rot (minpekare) till graden i matrisen.
  6. Kartlägg graden av nästa rot till graden i array.
  7. Om det finns mer än två mappningar för samma grad, använd sedan unionsoperation på de rötterna så att minhögegenskapen bibehålls (dvs minimum är i roten).

En implementering av ovanstående steg kan förstås i exemplet nedan.

  1. Vi utför en extraheringsmin-operation på högen nedan. Fibonacci Heap
  2. Ta bort min-noden, lägg till alla sina undernoder i rotlistan och ställ min-pekaren till nästa rot i rotlistan. Ta bort min-noden
  3. Den maximala graden i trädet är 3. Skapa en matris av storlek 4 och kartlägg graden för nästa rötter med matrisen. Skapa en matris
  4. Här har 23 och 7 samma grader, så förena dem. Förena dem som har samma grader
  5. Återigen har 7 och 17 samma grader, så fören dem också. Förena dem som har samma grader
  6. Återigen har 7 och 24 samma grad, så förena dem. Förena dem som har samma grader
  7. Kartlägga nästa noder. Kartlägg de återstående noderna
  8. Återigen har 52 och 21 samma grad, så förena dem Förena dem som har samma grader
  9. På samma sätt förenas 21 och 18. Förena dem som har samma grader
  10. Kartlägg den återstående roten. Kartlägg de återstående noderna
  11. Den sista högen är. Slutlig Fibonacci-hög

Minska en nyckel och ta bort en nod

Dessa är de viktigaste operationerna som diskuteras i Minska nyckel och ta bort nodoperationer.

Python, Java och C / C ++ exempel

Python Java C C +
 # Fibonacci Heap in python import math # Creating fibonacci tree class FibonacciTree: def __init__(self, value): self.value = value self.child = () self.order = 0 # Adding tree at the end of the tree def add_at_end(self, t): self.child.append(t) self.order = self.order + 1 # Creating Fibonacci heap class FibonacciHeap: def __init__(self): self.trees = () self.least = None self.count = 0 # Insert a node def insert_node(self, value): new_tree = FibonacciTree(value) self.trees.append(new_tree) if (self.least is None or value y.value: x, y = y, x x.add_at_end(y) aux(order) = None order = order + 1 aux(order) = x self.least = None for k in aux: if k is not None: self.trees.append(k) if (self.least is None or k.value < self.least.value): self.least = k def floor_log(x): return math.frexp(x)(1) - 1 fibonacci_heap = FibonacciHeap() fibonacci_heap.insert_node(7) fibonacci_heap.insert_node(3) fibonacci_heap.insert_node(17) fibonacci_heap.insert_node(24) print('the minimum value of the fibonacci heap: ()'.format(fibonacci_heap.get_min())) print('the minimum value removed: ()'.format(fibonacci_heap.extract_min())) 
 // Operations on Fibonacci Heap in Java // Node creation class node ( node parent; node left; node right; node child; int degree; boolean mark; int key; public node() ( this.degree = 0; this.mark = false; this.parent = null; this.left = this; this.right = this; this.child = null; this.key = Integer.MAX_VALUE; ) node(int x) ( this(); this.key = x; ) void set_parent(node x) ( this.parent = x; ) node get_parent() ( return this.parent; ) void set_left(node x) ( this.left = x; ) node get_left() ( return this.left; ) void set_right(node x) ( this.right = x; ) node get_right() ( return this.right; ) void set_child(node x) ( this.child = x; ) node get_child() ( return this.child; ) void set_degree(int x) ( this.degree = x; ) int get_degree() ( return this.degree; ) void set_mark(boolean m) ( this.mark = m; ) boolean get_mark() ( return this.mark; ) void set_key(int x) ( this.key = x; ) int get_key() ( return this.key; ) ) public class fibHeap ( node min; int n; boolean trace; node found; public boolean get_trace() ( return trace; ) public void set_trace(boolean t) ( this.trace = t; ) public static fibHeap create_heap() ( return new fibHeap(); ) fibHeap() ( min = null; n = 0; trace = false; ) private void insert(node x) ( if (min == null) ( min = x; x.set_left(min); x.set_right(min); ) else ( x.set_right(min); x.set_left(min.get_left()); min.get_left().set_right(x); min.set_left(x); if (x.get_key() "); temp = temp.get_right(); ) while (temp != c); System.out.print(")"); ) ) public static void merge_heap(fibHeap H1, fibHeap H2, fibHeap H3) ( H3.min = H1.min; if (H1.min != null && H2.min != null) ( node t1 = H1.min.get_left(); node t2 = H2.min.get_left(); H1.min.set_left(t2); t1.set_right(H2.min); H2.min.set_left(t1); t2.set_right(H1.min); ) if (H1.min == null || (H2.min != null && H2.min.get_key() < H1.min.get_key())) H3.min = H2.min; H3.n = H1.n + H2.n; ) public int find_min() ( return this.min.get_key(); ) private void display_node(node z) ( System.out.println("right: " + ((z.get_right() == null) ? "-1" : z.get_right().get_key())); System.out.println("left: " + ((z.get_left() == null) ? "-1" : z.get_left().get_key())); System.out.println("child: " + ((z.get_child() == null) ? "-1" : z.get_child().get_key())); System.out.println("degree " + z.get_degree()); ) public int extract_min() ( node z = this.min; if (z != null) ( node c = z.get_child(); node k = c, p; if (c != null) ( do ( p = c.get_right(); insert(c); c.set_parent(null); c = p; ) while (c != null && c != k); ) z.get_left().set_right(z.get_right()); z.get_right().set_left(z.get_left()); z.set_child(null); if (z == z.get_right()) this.min = null; else ( this.min = z.get_right(); this.consolidate(); ) this.n -= 1; return z.get_key(); ) return Integer.MAX_VALUE; ) public void consolidate() ( double phi = (1 + Math.sqrt(5)) / 2; int Dofn = (int) (Math.log(this.n) / Math.log(phi)); node() A = new node(Dofn + 1); for (int i = 0; i y.get_key()) ( node temp = x; x = y; y = temp; w = x; ) fib_heap_link(y, x); check = x; A(d) = null; d += 1; ) A(d) = x; w = w.get_right(); ) while (w != null && w != check); this.min = null; for (int i = 0; i <= Dofn; ++i) ( if (A(i) != null) ( insert(A(i)); ) ) ) ) // Linking operation private void fib_heap_link(node y, node x) ( y.get_left().set_right(y.get_right()); y.get_right().set_left(y.get_left()); node p = x.get_child(); if (p == null) ( y.set_right(y); y.set_left(y); ) else ( y.set_right(p); y.set_left(p.get_left()); p.get_left().set_right(y); p.set_left(y); ) y.set_parent(x); x.set_child(y); x.set_degree(x.get_degree() + 1); y.set_mark(false); ) // Search operation private void find(int key, node c) ( if (found != null || c == null) return; else ( node temp = c; do ( if (key == temp.get_key()) found = temp; else ( node k = temp.get_child(); find(key, k); temp = temp.get_right(); ) ) while (temp != c && found == null); ) ) public node find(int k) ( found = null; find(k, this.min); return found; ) public void decrease_key(int key, int nval) ( node x = find(key); decrease_key(x, nval); ) // Decrease key operation private void decrease_key(node x, int k) ( if (k> x.get_key()) return; x.set_key(k); node y = x.get_parent(); if (y != null && x.get_key() < y.get_key()) ( cut(x, y); cascading_cut(y); ) if (x.get_key() < min.get_key()) min = x; ) // Cut operation private void cut(node x, node y) ( x.get_right().set_left(x.get_left()); x.get_left().set_right(x.get_right()); y.set_degree(y.get_degree() - 1); x.set_right(null); x.set_left(null); insert(x); x.set_parent(null); x.set_mark(false); ) private void cascading_cut(node y) ( node z = y.get_parent(); if (z != null) ( if (y.get_mark() == false) y.set_mark(true); else ( cut(y, z); cascading_cut(z); ) ) ) // Delete operations public void delete(node x) ( decrease_key(x, Integer.MIN_VALUE); int p = extract_min(); ) public static void main(String() args) ( fibHeap obj = create_heap(); obj.insert(7); obj.insert(26); obj.insert(30); obj.insert(39); obj.insert(10); obj.display(); System.out.println(obj.extract_min()); obj.display(); System.out.println(obj.extract_min()); obj.display(); System.out.println(obj.extract_min()); obj.display(); System.out.println(obj.extract_min()); obj.display(); System.out.println(obj.extract_min()); obj.display(); ) )
 // Operations on a Fibonacci heap in C #include #include #include #include typedef struct _NODE ( int key; int degree; struct _NODE *left_sibling; struct _NODE *right_sibling; struct _NODE *parent; struct _NODE *child; bool mark; bool visited; ) NODE; typedef struct fibanocci_heap ( int n; NODE *min; int phi; int degree; ) FIB_HEAP; FIB_HEAP *make_fib_heap(); void insertion(FIB_HEAP *H, NODE *new, int val); NODE *extract_min(FIB_HEAP *H); void consolidate(FIB_HEAP *H); void fib_heap_link(FIB_HEAP *H, NODE *y, NODE *x); NODE *find_min_node(FIB_HEAP *H); void decrease_key(FIB_HEAP *H, NODE *node, int key); void cut(FIB_HEAP *H, NODE *node_to_be_decrease, NODE *parent_node); void cascading_cut(FIB_HEAP *H, NODE *parent_node); void Delete_Node(FIB_HEAP *H, int dec_key); FIB_HEAP *make_fib_heap() ( FIB_HEAP *H; H = (FIB_HEAP *)malloc(sizeof(FIB_HEAP)); H->n = 0; H->min = NULL; H->phi = 0; H->degree = 0; return H; ) // Printing the heap void print_heap(NODE *n) ( NODE *x; for (x = n;; x = x->right_sibling) ( if (x->child == NULL) ( printf("node with no child (%d) ", x->key); ) else ( printf("NODE(%d) with child (%d)", x->key, x->child->key); print_heap(x->child); ) if (x->right_sibling == n) ( break; ) ) ) // Inserting nodes void insertion(FIB_HEAP *H, NODE *new, int val) ( new = (NODE *)malloc(sizeof(NODE)); new->key = val; new->degree = 0; new->mark = false; new->parent = NULL; new->child = NULL; new->visited = false; new->left_sibling = new; new->right_sibling = new; if (H->min == NULL) ( H->min = new; ) else ( H->min->left_sibling->right_sibling = new; new->right_sibling = H->min; new->left_sibling = H->min->left_sibling; H->min->left_sibling = new; if (new->key min->key) ( H->min = new; ) ) (H->n)++; ) // Find min node NODE *find_min_node(FIB_HEAP *H) ( if (H == NULL) ( printf(" Fibonacci heap not yet created "); return NULL; ) else return H->min; ) // Union operation FIB_HEAP *unionHeap(FIB_HEAP *H1, FIB_HEAP *H2) ( FIB_HEAP *Hnew; Hnew = make_fib_heap(); Hnew->min = H1->min; NODE *temp1, *temp2; temp1 = Hnew->min->right_sibling; temp2 = H2->min->left_sibling; Hnew->min->right_sibling->left_sibling = H2->min->left_sibling; Hnew->min->right_sibling = H2->min; H2->min->left_sibling = Hnew->min; temp2->right_sibling = temp1; if ((H1->min == NULL) || (H2->min != NULL && H2->min->key min->key)) Hnew->min = H2->min; Hnew->n = H1->n + H2->n; return Hnew; ) // Calculate the degree int cal_degree(int n) ( int count = 0; while (n> 0) ( n = n / 2; count++; ) return count; ) // Consolidate function void consolidate(FIB_HEAP *H) ( int degree, i, d; degree = cal_degree(H->n); NODE *A(degree), *x, *y, *z; for (i = 0; i min; do ( d = x->degree; while (A(d) != NULL) ( y = A(d); if (x->key> y->key) ( NODE *exchange_help; exchange_help = x; x = y; y = exchange_help; ) if (y == H->min) H->min = x; fib_heap_link(H, y, x); if (y->right_sibling == x) H->min = x; A(d) = NULL; d++; ) A(d) = x; x = x->right_sibling; ) while (x != H->min); H->min = NULL; for (i = 0; i left_sibling = A(i); A(i)->right_sibling = A(i); if (H->min == NULL) ( H->min = A(i); ) else ( H->min->left_sibling->right_sibling = A(i); A(i)->right_sibling = H->min; A(i)->left_sibling = H->min->left_sibling; H->min->left_sibling = A(i); if (A(i)->key min->key) ( H->min = A(i); ) ) if (H->min == NULL) ( H->min = A(i); ) else if (A(i)->key min->key) ( H->min = A(i); ) ) ) ) // Linking void fib_heap_link(FIB_HEAP *H, NODE *y, NODE *x) ( y->right_sibling->left_sibling = y->left_sibling; y->left_sibling->right_sibling = y->right_sibling; if (x->right_sibling == x) H->min = x; y->left_sibling = y; y->right_sibling = y; y->parent = x; if (x->child == NULL) ( x->child = y; ) y->right_sibling = x->child; y->left_sibling = x->child->left_sibling; x->child->left_sibling->right_sibling = y; x->child->left_sibling = y; if ((y->key) child->key)) x->child = y; (x->degree)++; ) // Extract min NODE *extract_min(FIB_HEAP *H) ( if (H->min == NULL) printf(" The heap is empty"); else ( NODE *temp = H->min; NODE *pntr; pntr = temp; NODE *x = NULL; if (temp->child != NULL) ( x = temp->child; do ( pntr = x->right_sibling; (H->min->left_sibling)->right_sibling = x; x->right_sibling = H->min; x->left_sibling = H->min->left_sibling; H->min->left_sibling = x; if (x->key min->key) H->min = x; x->parent = NULL; x = pntr; ) while (pntr != temp->child); ) (temp->left_sibling)->right_sibling = temp->right_sibling; (temp->right_sibling)->left_sibling = temp->left_sibling; H->min = temp->right_sibling; if (temp == temp->right_sibling && temp->child == NULL) H->min = NULL; else ( H->min = temp->right_sibling; consolidate(H); ) H->n = H->n - 1; return temp; ) return H->min; ) void cut(FIB_HEAP *H, NODE *node_to_be_decrease, NODE *parent_node) ( NODE *temp_parent_check; if (node_to_be_decrease == node_to_be_decrease->right_sibling) parent_node->child = NULL; node_to_be_decrease->left_sibling->right_sibling = node_to_be_decrease->right_sibling; node_to_be_decrease->right_sibling->left_sibling = node_to_be_decrease->left_sibling; if (node_to_be_decrease == parent_node->child) parent_node->child = node_to_be_decrease->right_sibling; (parent_node->degree)--; node_to_be_decrease->left_sibling = node_to_be_decrease; node_to_be_decrease->right_sibling = node_to_be_decrease; H->min->left_sibling->right_sibling = node_to_be_decrease; node_to_be_decrease->right_sibling = H->min; node_to_be_decrease->left_sibling = H->min->left_sibling; H->min->left_sibling = node_to_be_decrease; node_to_be_decrease->parent = NULL; node_to_be_decrease->mark = false; ) void cascading_cut(FIB_HEAP *H, NODE *parent_node) ( NODE *aux; aux = parent_node->parent; if (aux != NULL) ( if (parent_node->mark == false) ( parent_node->mark = true; ) else ( cut(H, parent_node, aux); cascading_cut(H, aux); ) ) ) void decrease_key(FIB_HEAP *H, NODE *node_to_be_decrease, int new_key) ( NODE *parent_node; if (H == NULL) ( printf(" FIbonacci heap not created "); return; ) if (node_to_be_decrease == NULL) ( printf("Node is not in the heap"); ) else ( if (node_to_be_decrease->key key = new_key; parent_node = node_to_be_decrease->parent; if ((parent_node != NULL) && (node_to_be_decrease->key key)) ( printf(" cut called"); cut(H, node_to_be_decrease, parent_node); printf(" cascading cut called"); cascading_cut(H, parent_node); ) if (node_to_be_decrease->key min->key) ( H->min = node_to_be_decrease; ) ) ) ) void *find_node(FIB_HEAP *H, NODE *n, int key, int new_key) ( NODE *find_use = n; NODE *f = NULL; find_use->visited = true; if (find_use->key == key) ( find_use->visited = false; f = find_use; decrease_key(H, f, new_key); ) if (find_use->child != NULL) ( find_node(H, find_use->child, key, new_key); ) if ((find_use->right_sibling->visited != true)) ( find_node(H, find_use->right_sibling, key, new_key); ) find_use->visited = false; ) FIB_HEAP *insertion_procedure() ( FIB_HEAP *temp; int no_of_nodes, ele, i; NODE *new_node; temp = (FIB_HEAP *)malloc(sizeof(FIB_HEAP)); temp = NULL; if (temp == NULL) ( temp = make_fib_heap(); ) printf(" enter number of nodes to be insert = "); scanf("%d", &no_of_nodes); for (i = 1; i min, dec_key, -5000); p = extract_min(H); if (p != NULL) printf(" Node deleted"); else printf(" Node not deleted:some error"); ) int main(int argc, char **argv) ( NODE *new_node, *min_node, *extracted_min, *node_to_be_decrease, *find_use; FIB_HEAP *heap, *h1, *h2; int operation_no, new_key, dec_key, ele, i, no_of_nodes; heap = (FIB_HEAP *)malloc(sizeof(FIB_HEAP)); heap = NULL; while (1) ( printf(" Operations 1. Create Fibonacci heap 2. Insert nodes into fibonacci heap 3. Find min 4. Union 5. Extract min 6. Decrease key 7.Delete node 8. print heap 9. exit enter operation_no = "); scanf("%d", &operation_no); switch (operation_no) ( case 1: heap = make_fib_heap(); break; case 2: if (heap == NULL) ( heap = make_fib_heap(); ) printf(" enter number of nodes to be insert = "); scanf("%d", &no_of_nodes); for (i = 1; i key); break; case 4: if (heap == NULL) ( printf(" no FIbonacci heap created "); break; ) h1 = insertion_procedure(); heap = unionHeap(heap, h1); printf("Unified Heap:"); print_heap(heap->min); break; case 5: if (heap == NULL) printf("Empty Fibonacci heap"); else ( extracted_min = extract_min(heap); printf(" min value = %d", extracted_min->key); printf(" Updated heap: "); print_heap(heap->min); ) break; case 6: if (heap == NULL) printf("Fibonacci heap is empty"); else ( printf(" node to be decreased = "); scanf("%d", &dec_key); printf(" enter the new key = "); scanf("%d", &new_key); find_use = heap->min; find_node(heap, find_use, dec_key, new_key); printf(" Key decreased- Corresponding heap:"); print_heap(heap->min); ) break; case 7: if (heap == NULL) printf("Fibonacci heap is empty"); else ( printf(" Enter node key to be deleted = "); scanf("%d", &dec_key); Delete_Node(heap, dec_key); printf(" Node Deleted- Corresponding heap:"); print_heap(heap->min); break; ) case 8: print_heap(heap->min); break; case 9: free(new_node); free(heap); exit(0); default: printf("Invalid choice "); ) ) )
 // Operations on a Fibonacci heap in C++ #include #include #include using namespace std; // Node creation struct node ( int n; int degree; node *parent; node *child; node *left; node *right; char mark; char C; ); // Implementation of Fibonacci heap class FibonacciHeap ( private: int nH; node *H; public: node *InitializeHeap(); int Fibonnaci_link(node *, node *, node *); node *Create_node(int); node *Insert(node *, node *); node *Union(node *, node *); node *Extract_Min(node *); int Consolidate(node *); int Display(node *); node *Find(node *, int); int Decrease_key(node *, int, int); int Delete_key(node *, int); int Cut(node *, node *, node *); int Cascase_cut(node *, node *); FibonacciHeap() ( H = InitializeHeap(); ) ); // Initialize heap node *FibonacciHeap::InitializeHeap() ( node *np; np = NULL; return np; ) // Create node node *FibonacciHeap::Create_node(int value) ( node *x = new node; x->n = value; return x; ) // Insert node node *FibonacciHeap::Insert(node *H, node *x) ( x->degree = 0; x->parent = NULL; x->child = NULL; x->left = x; x->right = x; x->mark = 'F'; x->C = 'N'; if (H != NULL) ( (H->left)->right = x; x->right = H; x->left = H->left; H->left = x; if (x->n n) H = x; ) else ( H = x; ) nH = nH + 1; return H; ) // Create linking int FibonacciHeap::Fibonnaci_link(node *H1, node *y, node *z) ( (y->left)->right = y->right; (y->right)->left = y->left; if (z->right == z) H1 = z; y->left = y; y->right = y; y->parent = z; if (z->child == NULL) z->child = y; y->right = z->child; y->left = (z->child)->left; ((z->child)->left)->right = y; (z->child)->left = y; if (y->n child)->n) z->child = y; z->degree++; ) // Union Operation node *FibonacciHeap::Union(node *H1, node *H2) ( node *np; node *H = InitializeHeap(); H = H1; (H->left)->right = H2; (H2->left)->right = H; np = H->left; H->left = H2->left; H2->left = np; return H; ) // Display the heap int FibonacciHeap::Display(node *H) ( node *p = H; if (p == NULL) ( cout << "Empty Heap" << endl; return 0; ) cout << "Root Nodes: " << endl; do ( cout  right; if (p != H) ( cout <"; ) ) while (p != H && p->right != NULL); cout <  child != NULL) x = z->child; if (x != NULL) ( ptr = x; do ( np = x->right; (H1->left)->right = x; x->right = H1; x->left = H1->left; H1->left = x; if (x->n n) H1 = x; x->parent = NULL; x = np; ) while (np != ptr); ) (z->left)->right = z->right; (z->right)->left = z->left; H1 = z->right; if (z == z->right && z->child == NULL) H = NULL; else ( H1 = z->right; Consolidate(H1); ) nH = nH - 1; return p; ) // Consolidation Function int FibonacciHeap::Consolidate(node *H1) ( int d, i; float f = (log(nH)) / (log(2)); int D = f; node *A(D); for (i = 0; i right; d = x->degree; while (A(d) != NULL) ( y = A(d); if (x->n> y->n) ( np = x; x = y; y = np; ) if (y == H1) H1 = x; Fibonnaci_link(H1, y, x); if (x->right == x) H1 = x; A(d) = NULL; d = d + 1; ) A(d) = x; x = x->right; ) while (x != H1); H = NULL; for (int j = 0; j left = A(j); A(j)->right = A(j); if (H != NULL) ( (H->left)->right = A(j); A(j)->right = H; A(j)->left = H->left; H->left = A(j); if (A(j)->n n) H = A(j); ) else ( H = A(j); ) if (H == NULL) H = A(j); else if (A(j)->n n) H = A(j); ) ) ) // Decrease Key Operation int FibonacciHeap::Decrease_key(node *H1, int x, int k) ( node *y; if (H1 == NULL) ( cout << "The Heap is Empty" << endl; return 0; ) node *ptr = Find(H1, x); if (ptr == NULL) ( cout << "Node not found in the Heap"  parent; if (y != NULL && ptr->n n) ( Cut(H1, ptr, y); Cascase_cut(H1, y); ) if (ptr->n n) H = ptr; return 0; ) // Cutting Function int FibonacciHeap::Cut(node *H1, node *x, node *y) ( if (x == x->right) y->child = NULL; (x->left)->right = x->right; (x->right)->left = x->left; if (x == y->child) y->child = x->right; y->degree = y->degree - 1; x->right = x; x->left = x; (H1->left)->right = x; x->right = H1; x->left = H1->left; H1->left = x; x->parent = NULL; x->mark = 'F'; ) // Cascade cut int FibonacciHeap::Cascase_cut(node *H1, node *y) ( node *z = y->parent; if (z != NULL) ( if (y->mark == 'F') ( y->mark = 'T'; ) else ( Cut(H1, y, z); Cascase_cut(H1, z); ) ) ) // Search function node *FibonacciHeap::Find(node *H, int k) ( node *x = H; x->C = 'Y'; node *p = NULL; if (x->n == k) ( p = x; x->C = 'N'; return p; ) if (p == NULL) ( if (x->child != NULL) p = Find(x->child, k); if ((x->right)->C != 'Y') p = Find(x->right, k); ) x->C = 'N'; return p; ) // Deleting key int FibonacciHeap::Delete_key(node *H1, int k) ( node *np = NULL; int t; t = Decrease_key(H1, k, -5000); if (!t) np = Extract_Min(H); if (np != NULL) cout << "Key Deleted" << endl; else cout << "Key not Deleted" << endl; return 0; ) int main() ( int n, m, l; FibonacciHeap fh; node *p; node *H; H = fh.InitializeHeap(); p = fh.Create_node(7); H = fh.Insert(H, p); p = fh.Create_node(3); H = fh.Insert(H, p); p = fh.Create_node(17); H = fh.Insert(H, p); p = fh.Create_node(24); H = fh.Insert(H, p); fh.Display(H); p = fh.Extract_Min(H); if (p != NULL) cout << "The node with minimum key: "    

Complexities

Insertion O(1)
Find Min O(1)
Union O(1)
Extract Min O(log n)
Decrease Key O(1)
Delete Node O(log n)

Fibonacci Heap Applications

  1. To improve the asymptotic running time of Dijkstra's algorithm.

Intressanta artiklar...