I denna handledning lär du dig vad ett B-träd är. Du hittar också arbetsexempel på sökning på ett B-träd i C, C ++, Java och Python.
B-träd är en speciell typ av självbalanserande sökträd där varje nod kan innehålla mer än en nyckel och kan ha mer än två barn. Det är en generaliserad form av det binära sökträdet.
Det är också känt som ett höjdbalanserat m-vägträd.

Varför B-träd?
Behovet av B-träd uppstod med ökningen av behovet av mindre tid för åtkomst till det fysiska lagringsmediet som en hårddisk. De sekundära lagringsenheterna är långsammare med större kapacitet. Det fanns ett behov av sådana typer av datastrukturer som minimerar åtkomst till disken.
Andra datastrukturer som ett binärt sökträd, avl-träd, rött-svart träd osv kan bara lagra en nyckel i en nod. Om du måste lagra ett stort antal nycklar blir höjden på sådana träd väldigt stor och åtkomsttiden ökar.
B-träd kan dock lagra många nycklar i en enda nod och kan ha flera barnnoder. Detta minskar höjden avsevärt och möjliggör snabbare åtkomst till disken.
Egenskaper för B-träd
- För varje nod x lagras nycklarna i ökande ordning.
- I varje nod finns det ett booleskt värde x.leaf som är sant om x är ett blad.
- Om n är trädets ordning kan varje intern nod högst innehålla n - 1 tangenter tillsammans med en pekare till varje barn.
- Varje nod utom rot kan ha högst n barn och minst n / 2 barn.
- Alla löv har samma djup (dvs. trädets höjd-h).
- Roten har minst två barn och innehåller minst 1 nyckel.
- Om n ≧ 1, sedan för varje n-key B-träd med höjden h och minimal grad
t ≧ 2
, .h ≧ logt (n+1)/2
Operationer
Sökande
Att söka efter ett element i ett B-träd är den allmänna formen av att söka efter ett element i ett binärt sökträd. Följande steg följs.
- Från och med rotnoden, jämför k med nodens första nyckel.
Omk = the first key of the node
, returnera noden och indexet. - Om
k.leaf = true
, returnera NULL (dvs hittades inte). - Om
k < the first key of the root node
, sök vänster barn på denna nyckel rekursivt. - Om det finns mer än en nyckel i den aktuella noden och
k> the first key
jämför k med nästa nyckel i noden.
Om duk < next key
söker till vänster i den här tangenten (dvs. k ligger mellan den första och den andra tangenten).
Annars söker du efter rätt nyckelbarn. - Upprepa steg 1 till 4 tills bladet når.
Sökningsexempel
- Låt oss söka
k = 17
in i trädet nedanför grad 3.B-träd
- k finns inte i roten så jämför det med rotnyckeln.
k finns inte på rotnoden
- Eftersom
k> 11
, gå till höger barn rotnoden.Gå till rätt underträd
- Jämför k med 16. Eftersom
k> 16
, jämför k med nästa tangent 18.Jämför med tangenterna från vänster till höger
- Eftersom
k < 18
k ligger mellan 16 och 18. Sök i det högra barnet av 16 eller det vänstra barnet av 18.k ligger mellan 16 och 18
- k finns.
k hittas
Algoritm för att söka efter ett element
BtreeSearch(x, k) i = 1 while i ≦ n(x) and k ≧ keyi(x) // n(x) means number of keys in x node do i = i + 1 if i n(x) and k = keyi(x) then return (x, i) if leaf (x) then return NIL else return BtreeSearch(ci(x), k)
För att lära dig mer om olika B-trädoperationer, besök
- Insättning på B-träd
- Radering på B-träd
Python, Java och C / C ++ exempel
Python Java C C ++# Searching a key on a B-tree in Python # Create node class BTreeNode: def __init__(self, leaf=False): self.leaf = leaf self.keys = () self.child = () class BTree: def __init__(self, t): self.root = BTreeNode(True) self.t = t # Print the tree def print_tree(self, x, l=0): print("Level ", l, " ", len(x.keys), end=":") for i in x.keys: print(i, end=" ") print() l += 1 if len(x.child)> 0: for i in x.child: self.print_tree(i, l) # Search key def search_key(self, k, x=None): if x is not None: i = 0 while i x.keys(i)(0): i += 1 if i = 0 and k(0) = 0 and k(0) x.keys(i)(0): i += 1 self.insert_non_full(x.child(i), k) # Split def split(self, x, i): t = self.t y = x.child(i) z = BTreeNode(y.leaf) x.child.insert_key(i + 1, z) x.keys.insert_key(i, y.keys(t - 1)) z.keys = y.keys(t: (2 * t) - 1) y.keys = y.keys(0: t - 1) if not y.leaf: z.child = y.child(t: 2 * t) y.child = y.child(0: t - 1) def main(): B = BTree(3) for i in range(10): B.insert_key((i, 2 * i)) B.print_tree(B.root) if B.search_key(8) is not None: print("Found") else: print("Not found") if __name__ == '__main__': main()
// Searching a key on a B-tree in Java public class BTree ( private int T; // Node creation public class Node ( int n; int key() = new int(2 * T - 1); Node child() = new Node(2 * T); boolean leaf = true; public int Find(int k) ( for (int i = 0; i < this.n; i++) ( if (this.key(i) == k) ( return i; ) ) return -1; ); ) public BTree(int t) ( T = t; root = new Node(); root.n = 0; root.leaf = true; ) private Node root; // Search key private Node Search(Node x, int key) ( int i = 0; if (x == null) return x; for (i = 0; i < x.n; i++) ( if (key < x.key(i)) ( break; ) if (key == x.key(i)) ( return x; ) ) if (x.leaf) ( return null; ) else ( return Search(x.child(i), key); ) ) // Splitting the node private void Split(Node x, int pos, Node y) ( Node z = new Node(); z.leaf = y.leaf; z.n = T - 1; for (int j = 0; j < T - 1; j++) ( z.key(j) = y.key(j + T); ) if (!y.leaf) ( for (int j = 0; j = pos + 1; j--) ( x.child(j + 1) = x.child(j); ) x.child(pos + 1) = z; for (int j = x.n - 1; j>= pos; j--) ( x.key(j + 1) = x.key(j); ) x.key(pos) = y.key(T - 1); x.n = x.n + 1; ) // Inserting a value public void Insert(final int key) ( Node r = root; if (r.n == 2 * T - 1) ( Node s = new Node(); root = s; s.leaf = false; s.n = 0; s.child(0) = r; Split(s, 0, r); insertValue(s, key); ) else ( insertValue(r, key); ) ) // Insert the node final private void insertValue(Node x, int k) ( if (x.leaf) ( int i = 0; for (i = x.n - 1; i>= 0 && k = 0 && k x.key(i)) ( i++; ) ) insertValue(x.child(i), k); ) ) public void Show() ( Show(root); ) // Display private void Show(Node x) ( assert (x == null); for (int i = 0; i < x.n; i++) ( System.out.print(x.key(i) + " "); ) if (!x.leaf) ( for (int i = 0; i < x.n + 1; i++) ( Show(x.child(i)); ) ) ) // Check if present public boolean Contain(int k) ( if (this.Search(root, k) != null) ( return true; ) else ( return false; ) ) public static void main(String() args) ( BTree b = new BTree(3); b.Insert(8); b.Insert(9); b.Insert(10); b.Insert(11); b.Insert(15); b.Insert(20); b.Insert(17); b.Show(); if (b.Contain(12)) ( System.out.println("found"); ) else ( System.out.println("not found"); ) ; ) )
// Searching a key on a B-tree in C #include #include #define MAX 3 #define MIN 2 struct BTreeNode ( int val(MAX + 1), count; struct BTreeNode *link(MAX + 1); ); struct BTreeNode *root; // Create a node struct BTreeNode *createNode(int val, struct BTreeNode *child) ( struct BTreeNode *newNode; newNode = (struct BTreeNode *)malloc(sizeof(struct BTreeNode)); newNode->val(1) = val; newNode->count = 1; newNode->link(0) = root; newNode->link(1) = child; return newNode; ) // Insert node void insertNode(int val, int pos, struct BTreeNode *node, struct BTreeNode *child) ( int j = node->count; while (j> pos) ( node->val(j + 1) = node->val(j); node->link(j + 1) = node->link(j); j--; ) node->val(j + 1) = val; node->link(j + 1) = child; node->count++; ) // Split node void splitNode(int val, int *pval, int pos, struct BTreeNode *node, struct BTreeNode *child, struct BTreeNode **newNode) ( int median, j; if (pos> MIN) median = MIN + 1; else median = MIN; *newNode = (struct BTreeNode *)malloc(sizeof(struct BTreeNode)); j = median + 1; while (j val(j - median) = node->val(j); (*newNode)->link(j - median) = node->link(j); j++; ) node->count = median; (*newNode)->count = MAX - median; if (pos val(node->count); (*newNode)->link(0) = node->link(node->count); node->count--; ) // Set the value int setValue(int val, int *pval, struct BTreeNode *node, struct BTreeNode **child) ( int pos; if (!node) ( *pval = val; *child = NULL; return 1; ) if (val val(1)) ( pos = 0; ) else ( for (pos = node->count; (val val(pos) && pos> 1); pos--) ; if (val == node->val(pos)) ( printf("Duplicates are not permitted"); return 0; ) ) if (setValue(val, pval, node->link(pos), child)) ( if (node->count < MAX) ( insertNode(*pval, pos, node, *child); ) else ( splitNode(*pval, pval, pos, node, *child, child); return 1; ) ) return 0; ) // Insert the value void insert(int val) ( int flag, i; struct BTreeNode *child; flag = setValue(val, &i, root, &child); if (flag) root = createNode(i, child); ) // Search node void search(int val, int *pos, struct BTreeNode *myNode) ( if (!myNode) ( return; ) if (val val(1)) ( *pos = 0; ) else ( for (*pos = myNode->count; (val val(*pos) && *pos> 1); (*pos)--) ; if (val == myNode->val(*pos)) ( printf("%d is found", val); return; ) ) search(val, pos, myNode->link(*pos)); return; ) // Traverse then nodes void traversal(struct BTreeNode *myNode) ( int i; if (myNode) ( for (i = 0; i count; i++) ( traversal(myNode->link(i)); printf("%d ", myNode->val(i + 1)); ) traversal(myNode->link(i)); ) ) int main() ( int val, ch; insert(8); insert(9); insert(10); insert(11); insert(15); insert(16); insert(17); insert(18); insert(20); insert(23); traversal(root); printf(""); search(11, &ch, root); )
// Searching a key on a B-tree in C++ #include using namespace std; class TreeNode ( int *keys; int t; TreeNode **C; int n; bool leaf; public: TreeNode(int temp, bool bool_leaf); void insertNonFull(int k); void splitChild(int i, TreeNode *y); void traverse(); TreeNode *search(int k); friend class BTree; ); class BTree ( TreeNode *root; int t; public: BTree(int temp) ( root = NULL; t = temp; ) void traverse() ( if (root != NULL) root->traverse(); ) TreeNode *search(int k) ( return (root == NULL) ? NULL : root->search(k); ) void insert(int k); ); TreeNode::TreeNode(int t1, bool leaf1) ( t = t1; leaf = leaf1; keys = new int(2 * t - 1); C = new TreeNode *(2 * t); n = 0; ) void TreeNode::traverse() ( int i; for (i = 0; i traverse(); cout << " "
search(k); ) void BTree::insert(int k) ( if (root == NULL) ( root = new TreeNode(t, true); root->keys(0) = k; root->n = 1; ) else ( if (root->n == 2 * t - 1) ( TreeNode *s = new TreeNode(t, false); s->C(0) = root; s->splitChild(0, root); int i = 0; if (s->keys(0) C(i)->insertNonFull(k); root = s; ) else root->insertNonFull(k); ) ) void TreeNode::insertNonFull(int k) ( int i = n - 1; if (leaf == true) ( while (i>= 0 && keys(i)> k) ( keys(i + 1) = keys(i); i--; ) keys(i + 1) = k; n = n + 1; ) else ( while (i>= 0 && keys(i)> k) i--; if (C(i + 1)->n == 2 * t - 1) ( splitChild(i + 1, C(i + 1)); if (keys(i + 1) insertNonFull(k); ) ) void TreeNode::splitChild(int i, TreeNode *y) ( TreeNode *z = new TreeNode(y->t, y->leaf); z->n = t - 1; for (int j = 0; j keys(j) = y->keys(j + t); if (y->leaf == false) ( for (int j = 0; j C(j) = y->C(j + t); ) y->n = t - 1; for (int j = n; j>= i + 1; j--) C(j + 1) = C(j); C(i + 1) = z; for (int j = n - 1; j>= i; j--) keys(j + 1) = keys(j); keys(i) = y->keys(t - 1); n = n + 1; ) int main() ( BTree t(3); t.insert(8); t.insert(9); t.insert(10); t.insert(11); t.insert(15); t.insert(16); t.insert(17); t.insert(18); t.insert(20); t.insert(23); cout << "The B-tree is: "; t.traverse(); int k = 10; (t.search(k) != NULL) ? cout << endl << k << " is found" : cout << endl << k << " is not Found"; k = 2; (t.search(k) != NULL) ? cout << endl << k << " is found" : cout << endl << k << " is not Found"; )
Söker komplexitet på B Tree
Värsta fall Tids komplexitet: Θ(log n)
Genomsnittligt fall Tids komplexitet: Θ(log n)
Bästa fallet Tidskomplexitet: Θ(log n)
Genomsnittligt fall Rumskomplexitet: Θ(n)
Värsta fall Rymdkomplexitet: Θ(n)
B Trädapplikationer
- databaser och filsystem
- att lagra datablock (sekundärt lagringsmedia)
- indexering på flera nivåer