I denna handledning lär du dig hur du tar bort en nyckel från ett b-träd. Dessutom hittar du exempel på hur du tar bort nycklar från ett B-träd i C, C ++, Java och Python.
Att radera ett element i ett B-träd består av tre huvudhändelser: söka i noden där nyckeln som ska raderas finns , ta bort nyckeln och balansera trädet om det behövs.
När du tar bort ett träd kan ett tillstånd som kallas underflöde uppstå. Underflöde uppstår när en nod innehåller mindre än det minsta antal nycklar som den ska innehålla.
Villkoren som ska förstås innan man studerar radering är:
- Inorder-föregångare
Den största nyckeln till vänster i en nod kallas dess inorder-föregångare. - Inorder efterträdare
Den minsta nyckeln till höger om en nod kallas dess efterföljare.
Radering
Innan man går igenom stegen nedan måste man känna till dessa fakta om ett B-träd av grad m .
- En nod kan ha högst m barn. (dvs. 3)
- En nod kan innehålla maximalt
m - 1
nycklar. (dvs. 2) - En nod ska ha ett minimum av
⌈m/2⌉
barn. (dvs. 2) - En nod (utom rotnod) bör innehålla ett minimum av
⌈m/2⌉ - 1
nycklar. (dvs. 1)
Det finns tre huvudfall för radering i ett B-träd.
Fall I
Nyckeln som ska raderas ligger i bladet. Det finns två fall för det.
- Radering av nyckeln bryter inte mot egenskapen för det minsta antal nycklar som en nod ska innehålla.
I trädet nedan bryter inte borttagning av 32 egenskaperna ovan.Ta bort en bladnyckel (32) från B-trädet
- Radering av nyckeln bryter mot egenskapen för det minsta antal nycklar som en nod ska innehålla. I det här fallet lånar vi en nyckel från dess närliggande syskonknut i ordningen från vänster till höger.
Besök först det vänstra syskonet omedelbart. Om den vänstra syskonnoden har mer än ett minimum antal nycklar, så lån en nyckel från den här noden.
Annars, kolla för att låna från den omedelbart högra syskonnoden.
Om du tar bort 31 resultat i trädet nedan får du ovanstående tillstånd. Låt oss låna en nyckel från vänster syskon nod.Ta bort en bladnyckel (31) Om båda de omedelbara syskon-noderna redan har ett minimum antal nycklar, slå samman noden med antingen den vänstra syskon-noden eller den högra syskon-noden. Denna sammanslagning görs via föräldernoden.
Radering av 30 resultat i ovanstående fall.Ta bort en bladnyckel (30)
Fall II
Om nyckeln som ska raderas ligger i den interna noden uppstår följande fall.
- Den interna noden, som raderas, ersätts av en föregångare om det vänstra barnet har mer än det minsta antalet nycklar.
Radera en intern nod (33)
- Den interna noden, som raderas, ersätts av en efterföljare om rätt barn har mer än det minsta antalet nycklar.
- Om något barn har exakt ett minimum antal nycklar, slå samman vänster och höger barn.
Radera en intern nod (30) Efter sammanslagning om föräldernoden har mindre än det minsta antalet nycklar, leta efter syskonen som i fall I.
Fall III
I det här fallet krymper trädets höjd. Om målnyckeln ligger i en intern nod och borttagningen av nyckeln leder till ett färre antal nycklar i noden (dvs. mindre än det minsta som krävs), leta sedan efter inordnarens föregångare och efterföljaren. Om båda barnen har ett minimum antal nycklar kan lån inte ske. Detta leder till att fall II (3) dvs slå samman barnen.
Återigen, leta efter syskonet för att låna en nyckel. Men om syskonet bara har ett minimalt antal nycklar, slå samman noden med syskonet tillsammans med föräldern. Ordna barnen i enlighet med detta (ökande ordning).

Python, Java och C / C ++ exempel
Python Java C C ++ # Deleting a key on a B-tree in Python # Btree node class BTreeNode: def __init__(self, leaf=False): self.leaf = leaf self.keys = () self.child = () class BTree: def __init__(self, t): self.root = BTreeNode(True) self.t = t # Insert a key def insert(self, k): root = self.root if len(root.keys) == (2 * self.t) - 1: temp = BTreeNode() self.root = temp temp.child.insert(0, root) self.split_child(temp, 0) self.insert_non_full(temp, k) else: self.insert_non_full(root, k) # Insert non full def insert_non_full(self, x, k): i = len(x.keys) - 1 if x.leaf: x.keys.append((None, None)) while i>= 0 and k(0) = 0 and k(0) x.keys(i)(0): i += 1 self.insert_non_full(x.child(i), k) # Split the child def split_child(self, x, i): t = self.t y = x.child(i) z = BTreeNode(y.leaf) x.child.insert(i + 1, z) x.keys.insert(i, y.keys(t - 1)) z.keys = y.keys(t: (2 * t) - 1) y.keys = y.keys(0: t - 1) if not y.leaf: z.child = y.child(t: 2 * t) y.child = y.child(0: t - 1) # Delete a node def delete(self, x, k): t = self.t i = 0 while i x.keys(i)(0): i += 1 if x.leaf: if i < len(x.keys) and x.keys(i)(0) == k(0): x.keys.pop(i) return return if i = t: self.delete(x.child(i), k) else: if i != 0 and i + 2 = t: self.delete_sibling(x, i, i - 1) elif len(x.child(i + 1).keys)>= t: self.delete_sibling(x, i, i + 1) else: self.delete_merge(x, i, i + 1) elif i == 0: if len(x.child(i + 1).keys)>= t: self.delete_sibling(x, i, i + 1) else: self.delete_merge(x, i, i + 1) elif i + 1 == len(x.child): if len(x.child(i - 1).keys)>= t: self.delete_sibling(x, i, i - 1) else: self.delete_merge(x, i, i - 1) self.delete(x.child(i), k) # Delete internal node def delete_internal_node(self, x, k, i): t = self.t if x.leaf: if x.keys(i)(0) == k(0): x.keys.pop(i) return return if len(x.child(i).keys)>= t: x.keys(i) = self.delete_predecessor(x.child(i)) return elif len(x.child(i + 1).keys)>= t: x.keys(i) = self.delete_successor(x.child(i + 1)) return else: self.delete_merge(x, i, i + 1) self.delete_internal_node(x.child(i), k, self.t - 1) # Delete the predecessor def delete_predecessor(self, x): if x.leaf: return x.pop() n = len(x.keys) - 1 if len(x.child(n).keys)>= self.t: self.delete_sibling(x, n + 1, n) else: self.delete_merge(x, n, n + 1) self.delete_predecessor(x.child(n)) # Delete the successor def delete_successor(self, x): if x.leaf: return x.keys.pop(0) if len(x.child(1).keys)>= self.t: self.delete_sibling(x, 0, 1) else: self.delete_merge(x, 0, 1) self.delete_successor(x.child(0)) # Delete resolution def delete_merge(self, x, i, j): cnode = x.child(i) if j> i: rsnode = x.child(j) cnode.keys.append(x.keys(i)) for k in range(len(rsnode.keys)): cnode.keys.append(rsnode.keys(k)) if len(rsnode.child)> 0: cnode.child.append(rsnode.child(k)) if len(rsnode.child)> 0: cnode.child.append(rsnode.child.pop()) new = cnode x.keys.pop(i) x.child.pop(j) else: lsnode = x.child(j) lsnode.keys.append(x.keys(j)) for i in range(len(cnode.keys)): lsnode.keys.append(cnode.keys(i)) if len(lsnode.child)> 0: lsnode.child.append(cnode.child(i)) if len(lsnode.child)> 0: lsnode.child.append(cnode.child.pop()) new = lsnode x.keys.pop(j) x.child.pop(i) if x == self.root and len(x.keys) == 0: self.root = new # Delete the sibling def delete_sibling(self, x, i, j): cnode = x.child(i) if i 0: cnode.child.append(rsnode.child(0)) rsnode.child.pop(0) rsnode.keys.pop(0) else: lsnode = x.child(j) cnode.keys.insert(0, x.keys(i - 1)) x.keys(i - 1) = lsnode.keys.pop() if len(lsnode.child)> 0: cnode.child.insert(0, lsnode.child.pop()) # Print the tree def print_tree(self, x, l=0): print("Level ", l, " ", len(x.keys), end=":") for i in x.keys: print(i, end=" ") print() l += 1 if len(x.child)> 0: for i in x.child: self.print_tree(i, l) B = BTree(3) for i in range(10): B.insert((i, 2 * i)) B.print_tree(B.root) B.delete(B.root, (8,)) print("") B.print_tree(B.root)
// Inserting a key on a B-tree in Java import java.util.Stack; public class BTree ( private int T; public class Node ( int n; int key() = new int(2 * T - 1); Node child() = new Node(2 * T); boolean leaf = true; public int Find(int k) ( for (int i = 0; i < this.n; i++) ( if (this.key(i) == k) ( return i; ) ) return -1; ); ) public BTree(int t) ( T = t; root = new Node(); root.n = 0; root.leaf = true; ) private Node root; // Search the key private Node Search(Node x, int key) ( int i = 0; if (x == null) return x; for (i = 0; i < x.n; i++) ( if (key < x.key(i)) ( break; ) if (key == x.key(i)) ( return x; ) ) if (x.leaf) ( return null; ) else ( return Search(x.child(i), key); ) ) // Split function private void Split(Node x, int pos, Node y) ( Node z = new Node(); z.leaf = y.leaf; z.n = T - 1; for (int j = 0; j < T - 1; j++) ( z.key(j) = y.key(j + T); ) if (!y.leaf) ( for (int j = 0; j = pos + 1; j--) ( x.child(j + 1) = x.child(j); ) x.child(pos + 1) = z; for (int j = x.n - 1; j>= pos; j--) ( x.key(j + 1) = x.key(j); ) x.key(pos) = y.key(T - 1); x.n = x.n + 1; ) // Insert the key public void Insert(final int key) ( Node r = root; if (r.n == 2 * T - 1) ( Node s = new Node(); root = s; s.leaf = false; s.n = 0; s.child(0) = r; Split(s, 0, r); _Insert(s, key); ) else ( _Insert(r, key); ) ) // Insert the node final private void _Insert(Node x, int k) ( if (x.leaf) ( int i = 0; for (i = x.n - 1; i>= 0 && k = 0 && k x.key(i)) ( i++; ) ) _Insert(x.child(i), k); ) ) public void Show() ( Show(root); ) private void Remove(Node x, int key) ( int pos = x.Find(key); if (pos != -1) ( if (x.leaf) ( int i = 0; for (i = 0; i < x.n && x.key(i) != key; i++) ( ) ; for (; i = T) ( for (;;) ( if (pred.leaf) ( System.out.println(pred.n); predKey = pred.key(pred.n - 1); break; ) else ( pred = pred.child(pred.n); ) ) Remove(pred, predKey); x.key(pos) = predKey; return; ) Node nextNode = x.child(pos + 1); if (nextNode.n>= T) ( int nextKey = nextNode.key(0); if (!nextNode.leaf) ( nextNode = nextNode.child(0); for (;;) ( if (nextNode.leaf) ( nextKey = nextNode.key(nextNode.n - 1); break; ) else ( nextNode = nextNode.child(nextNode.n); ) ) ) Remove(nextNode, nextKey); x.key(pos) = nextKey; return; ) int temp = pred.n + 1; pred.key(pred.n++) = x.key(pos); for (int i = 0, j = pred.n; i < nextNode.n; i++) ( pred.key(j++) = nextNode.key(i); pred.n++; ) for (int i = 0; i < nextNode.n + 1; i++) ( pred.child(temp++) = nextNode.child(i); ) x.child(pos) = pred; for (int i = pos; i < x.n; i++) ( if (i != 2 * T - 2) ( x.key(i) = x.key(i + 1); ) ) for (int i = pos + 1; i < x.n + 1; i++) ( if (i != 2 * T - 1) ( x.child(i) = x.child(i + 1); ) ) x.n--; if (x.n == 0) ( if (x == root) ( root = x.child(0); ) x = x.child(0); ) Remove(pred, key); return; ) ) else ( for (pos = 0; pos key) ( break; ) ) Node tmp = x.child(pos); if (tmp.n>= T) ( Remove(tmp, key); return; ) if (true) ( Node nb = null; int devider = -1; if (pos != x.n && x.child(pos + 1).n>= T) ( devider = x.key(pos); nb = x.child(pos + 1); x.key(pos) = nb.key(0); tmp.key(tmp.n++) = devider; tmp.child(tmp.n) = nb.child(0); for (int i = 1; i < nb.n; i++) ( nb.key(i - 1) = nb.key(i); ) for (int i = 1; i = T) ( devider = x.key(pos - 1); nb = x.child(pos - 1); x.key(pos - 1) = nb.key(nb.n - 1); Node child = nb.child(nb.n); nb.n--; for (int i = tmp.n; i> 0; i--) ( tmp.key(i) = tmp.key(i - 1); ) tmp.key(0) = devider; for (int i = tmp.n + 1; i> 0; i--) ( tmp.child(i) = tmp.child(i - 1); ) tmp.child(0) = child; tmp.n++; Remove(tmp, key); return; ) else ( Node lt = null; Node rt = null; boolean last = false; if (pos != x.n) ( devider = x.key(pos); lt = x.child(pos); rt = x.child(pos + 1); ) else ( devider = x.key(pos - 1); rt = x.child(pos); lt = x.child(pos - 1); last = true; pos--; ) for (int i = pos; i < x.n - 1; i++) ( x.key(i) = x.key(i + 1); ) for (int i = pos + 1; i < x.n; i++) ( x.child(i) = x.child(i + 1); ) x.n--; lt.key(lt.n++) = devider; for (int i = 0, j = lt.n; i < rt.n + 1; i++, j++) ( if (i < rt.n) ( lt.key(j) = rt.key(i); ) lt.child(j) = rt.child(i); ) lt.n += rt.n; if (x.n == 0) ( if (x == root) ( root = x.child(0); ) x = x.child(0); ) Remove(lt, key); return; ) ) ) ) public void Remove(int key) ( Node x = Search(root, key); if (x == null) ( return; ) Remove(root, key); ) public void Task(int a, int b) ( Stack st = new Stack(); FindKeys(a, b, root, st); while (st.isEmpty() == false) ( this.Remove(root, st.pop()); ) ) private void FindKeys(int a, int b, Node x, Stack st) ( int i = 0; for (i = 0; i < x.n && x.key(i) a) ( st.push(x.key(i)); ) ) if (!x.leaf) ( for (int j = 0; j < i + 1; j++) ( FindKeys(a, b, x.child(j), st); ) ) ) public boolean Contain(int k) ( if (this.Search(root, k) != null) ( return true; ) else ( return false; ) ) // Show the node private void Show(Node x) ( assert (x == null); for (int i = 0; i < x.n; i++) ( System.out.print(x.key(i) + " "); ) if (!x.leaf) ( for (int i = 0; i < x.n + 1; i++) ( Show(x.child(i)); ) ) ) public static void main(String() args) ( BTree b = new BTree(3); b.Insert(8); b.Insert(9); b.Insert(10); b.Insert(11); b.Insert(15); b.Insert(20); b.Insert(17); b.Show(); b.Remove(10); System.out.println(); b.Show(); ) )
// Deleting a key from a B-tree in C #include #include #define MAX 3 #define MIN 2 struct BTreeNode ( int item(MAX + 1), count; struct BTreeNode *linker(MAX + 1); ); struct BTreeNode *root; // Node creation struct BTreeNode *createNode(int item, struct BTreeNode *child) ( struct BTreeNode *newNode; newNode = (struct BTreeNode *)malloc(sizeof(struct BTreeNode)); newNode->item(1) = item; newNode->count = 1; newNode->linker(0) = root; newNode->linker(1) = child; return newNode; ) // Add value to the node void addValToNode(int item, int pos, struct BTreeNode *node, struct BTreeNode *child) ( int j = node->count; while (j> pos) ( node->item(j + 1) = node->item(j); node->linker(j + 1) = node->linker(j); j--; ) node->item(j + 1) = item; node->linker(j + 1) = child; node->count++; ) // Split the node void splitNode(int item, int *pval, int pos, struct BTreeNode *node, struct BTreeNode *child, struct BTreeNode **newNode) ( int median, j; if (pos> MIN) median = MIN + 1; else median = MIN; *newNode = (struct BTreeNode *)malloc(sizeof(struct BTreeNode)); j = median + 1; while (j item(j - median) = node->item(j); (*newNode)->linker(j - median) = node->linker(j); j++; ) node->count = median; (*newNode)->count = MAX - median; if (pos item(node->count); (*newNode)->linker(0) = node->linker(node->count); node->count--; ) // Set the value in the node int setValueInNode(int item, int *pval, struct BTreeNode *node, struct BTreeNode **child) ( int pos; if (!node) ( *pval = item; *child = NULL; return 1; ) if (item item(1)) ( pos = 0; ) else ( for (pos = node->count; (item item(pos) && pos> 1); pos--) ; if (item == node->item(pos)) ( printf("Duplicates not allowed"); return 0; ) ) if (setValueInNode(item, pval, node->linker(pos), child)) ( if (node->count linker(pos); for (; dummy->linker(0) != NULL;) dummy = dummy->linker(0); myNode->item(pos) = dummy->item(1); ) // Remove the value void removeVal(struct BTreeNode *myNode, int pos) ( int i = pos + 1; while (i count) ( myNode->item(i - 1) = myNode->item(i); myNode->linker(i - 1) = myNode->linker(i); i++; ) myNode->count--; ) // Do right shift void rightShift(struct BTreeNode *myNode, int pos) ( struct BTreeNode *x = myNode->linker(pos); int j = x->count; while (j> 0) ( x->item(j + 1) = x->item(j); x->linker(j + 1) = x->linker(j); ) x->item(1) = myNode->item(pos); x->linker(1) = x->linker(0); x->count++; x = myNode->linker(pos - 1); myNode->item(pos) = x->item(x->count); myNode->linker(pos) = x->linker(x->count); x->count--; return; ) // Do left shift void leftShift(struct BTreeNode *myNode, int pos) ( int j = 1; struct BTreeNode *x = myNode->linker(pos - 1); x->count++; x->item(x->count) = myNode->item(pos); x->linker(x->count) = myNode->linker(pos)->linker(0); x = myNode->linker(pos); myNode->item(pos) = x->item(1); x->linker(0) = x->linker(1); x->count--; while (j count) ( x->item(j) = x->item(j + 1); x->linker(j) = x->linker(j + 1); j++; ) return; ) // Merge the nodes void mergeNodes(struct BTreeNode *myNode, int pos) ( int j = 1; struct BTreeNode *x1 = myNode->linker(pos), *x2 = myNode->linker(pos - 1); x2->count++; x2->item(x2->count) = myNode->item(pos); x2->linker(x2->count) = myNode->linker(0); while (j count) ( x2->count++; x2->item(x2->count) = x1->item(j); x2->linker(x2->count) = x1->linker(j); j++; ) j = pos; while (j count) ( myNode->item(j) = myNode->item(j + 1); myNode->linker(j) = myNode->linker(j + 1); j++; ) myNode->count--; free(x1); ) // Adjust the node void adjustNode(struct BTreeNode *myNode, int pos) ( if (!pos) ( if (myNode->linker(1)->count> MIN) ( leftShift(myNode, 1); ) else ( mergeNodes(myNode, 1); ) ) else ( if (myNode->count != pos) ( if (myNode->linker(pos - 1)->count> MIN) ( rightShift(myNode, pos); ) else ( if (myNode->linker(pos + 1)->count> MIN) ( leftShift(myNode, pos + 1); ) else ( mergeNodes(myNode, pos); ) ) ) else ( if (myNode->linker(pos - 1)->count> MIN) rightShift(myNode, pos); else mergeNodes(myNode, pos); ) ) ) // Delete a value from the node int delValFromNode(int item, struct BTreeNode *myNode) ( int pos, flag = 0; if (myNode) ( if (item item(1)) ( pos = 0; flag = 0; ) else ( for (pos = myNode->count; (item item(pos) && pos> 1); pos--) ; if (item == myNode->item(pos)) ( flag = 1; ) else ( flag = 0; ) ) if (flag) ( if (myNode->linker(pos - 1)) ( copySuccessor(myNode, pos); flag = delValFromNode(myNode->item(pos), myNode->linker(pos)); if (flag == 0) ( printf("Given data is not present in B-Tree"); ) ) else ( removeVal(myNode, pos); ) ) else ( flag = delValFromNode(item, myNode->linker(pos)); ) if (myNode->linker(pos)) ( if (myNode->linker(pos)->count count == 0) ( tmp = myNode; myNode = myNode->linker(0); free(tmp); ) ) root = myNode; return; ) void searching(int item, int *pos, struct BTreeNode *myNode) ( if (!myNode) ( return; ) if (item item(1)) ( *pos = 0; ) else ( for (*pos = myNode->count; (item item(*pos) && *pos> 1); (*pos)--) ; if (item == myNode->item(*pos)) ( printf("%d present in B-tree", item); return; ) ) searching(item, pos, myNode->linker(*pos)); return; ) void traversal(struct BTreeNode *myNode) ( int i; if (myNode) ( for (i = 0; i count; i++) ( traversal(myNode->linker(i)); printf("%d ", myNode->item(i + 1)); ) traversal(myNode->linker(i)); ) ) int main() ( int item, ch; insertion(8); insertion(9); insertion(10); insertion(11); insertion(15); insertion(16); insertion(17); insertion(18); insertion(20); insertion(23); traversal(root); delete (20, root); printf(""); traversal(root); )
// Deleting a key from a B-tree in C++ #include using namespace std; class BTreeNode ( int *keys; int t; BTreeNode **C; int n; bool leaf; public: BTreeNode(int _t, bool _leaf); void traverse(); int findKey(int k); void insertNonFull(int k); void splitChild(int i, BTreeNode *y); void deletion(int k); void removeFromLeaf(int idx); void removeFromNonLeaf(int idx); int getPredecessor(int idx); int getSuccessor(int idx); void fill(int idx); void borrowFromPrev(int idx); void borrowFromNext(int idx); void merge(int idx); friend class BTree; ); class BTree ( BTreeNode *root; int t; public: BTree(int _t) ( root = NULL; t = _t; ) void traverse() ( if (root != NULL) root->traverse(); ) void insertion(int k); void deletion(int k); ); // B tree node BTreeNode::BTreeNode(int t1, bool leaf1) ( t = t1; leaf = leaf1; keys = new int(2 * t - 1); C = new BTreeNode *(2 * t); n = 0; ) // Find the key int BTreeNode::findKey(int k) ( int idx = 0; while (idx < n && keys(idx) < k) ++idx; return idx; ) // Deletion operation void BTreeNode::deletion(int k) ( int idx = findKey(k); if (idx < n && keys(idx) == k) ( if (leaf) removeFromLeaf(idx); else removeFromNonLeaf(idx); ) else ( if (leaf) ( cout << "The key " << k deletion(k); else C(idx)->deletion(k); ) return; ) // Remove from the leaf void BTreeNode::removeFromLeaf(int idx) ( for (int i = idx + 1; i n>= t) ( int pred = getPredecessor(idx); keys(idx) = pred; C(idx)->deletion(pred); ) else if (C(idx + 1)->n>= t) ( int succ = getSuccessor(idx); keys(idx) = succ; C(idx + 1)->deletion(succ); ) else ( merge(idx); C(idx)->deletion(k); ) return; ) int BTreeNode::getPredecessor(int idx) ( BTreeNode *cur = C(idx); while (!cur->leaf) cur = cur->C(cur->n); return cur->keys(cur->n - 1); ) int BTreeNode::getSuccessor(int idx) ( BTreeNode *cur = C(idx + 1); while (!cur->leaf) cur = cur->C(0); return cur->keys(0); ) void BTreeNode::fill(int idx) ( if (idx != 0 && C(idx - 1)->n>= t) borrowFromPrev(idx); else if (idx != n && C(idx + 1)->n>= t) borrowFromNext(idx); else ( if (idx != n) merge(idx); else merge(idx - 1); ) return; ) // Borrow from previous void BTreeNode::borrowFromPrev(int idx) ( BTreeNode *child = C(idx); BTreeNode *sibling = C(idx - 1); for (int i = child->n - 1; i>= 0; --i) child->keys(i + 1) = child->keys(i); if (!child->leaf) ( for (int i = child->n; i>= 0; --i) child->C(i + 1) = child->C(i); ) child->keys(0) = keys(idx - 1); if (!child->leaf) child->C(0) = sibling->C(sibling->n); keys(idx - 1) = sibling->keys(sibling->n - 1); child->n += 1; sibling->n -= 1; return; ) // Borrow from the next void BTreeNode::borrowFromNext(int idx) ( BTreeNode *child = C(idx); BTreeNode *sibling = C(idx + 1); child->keys((child->n)) = keys(idx); if (!(child->leaf)) child->C((child->n) + 1) = sibling->C(0); keys(idx) = sibling->keys(0); for (int i = 1; i n; ++i) sibling->keys(i - 1) = sibling->keys(i); if (!sibling->leaf) ( for (int i = 1; i n; ++i) sibling->C(i - 1) = sibling->C(i); ) child->n += 1; sibling->n -= 1; return; ) // Merge void BTreeNode::merge(int idx) ( BTreeNode *child = C(idx); BTreeNode *sibling = C(idx + 1); child->keys(t - 1) = keys(idx); for (int i = 0; i n; ++i) child->keys(i + t) = sibling->keys(i); if (!child->leaf) ( for (int i = 0; i n; ++i) child->C(i + t) = sibling->C(i); ) for (int i = idx + 1; i < n; ++i) keys(i - 1) = keys(i); for (int i = idx + 2; i n += sibling->n + 1; n--; delete (sibling); return; ) // Insertion operation void BTree::insertion(int k) ( if (root == NULL) ( root = new BTreeNode(t, true); root->keys(0) = k; root->n = 1; ) else ( if (root->n == 2 * t - 1) ( BTreeNode *s = new BTreeNode(t, false); s->C(0) = root; s->splitChild(0, root); int i = 0; if (s->keys(0) C(i)->insertNonFull(k); root = s; ) else root->insertNonFull(k); ) ) // Insertion non full void BTreeNode::insertNonFull(int k) ( int i = n - 1; if (leaf == true) ( while (i>= 0 && keys(i)> k) ( keys(i + 1) = keys(i); i--; ) keys(i + 1) = k; n = n + 1; ) else ( while (i>= 0 && keys(i)> k) i--; if (C(i + 1)->n == 2 * t - 1) ( splitChild(i + 1, C(i + 1)); if (keys(i + 1) insertNonFull(k); ) ) // Split child void BTreeNode::splitChild(int i, BTreeNode *y) ( BTreeNode *z = new BTreeNode(y->t, y->leaf); z->n = t - 1; for (int j = 0; j keys(j) = y->keys(j + t); if (y->leaf == false) ( for (int j = 0; j C(j) = y->C(j + t); ) y->n = t - 1; for (int j = n; j>= i + 1; j--) C(j + 1) = C(j); C(i + 1) = z; for (int j = n - 1; j>= i; j--) keys(j + 1) = keys(j); keys(i) = y->keys(t - 1); n = n + 1; ) // Traverse void BTreeNode::traverse() ( int i; for (i = 0; i traverse(); cout << " "
n == 0) ( BTreeNode *tmp = root; if (root->leaf) root = NULL; else root = root->C(0); delete tmp; ) return; ) int main() ( BTree t(3); t.insertion(8); t.insertion(9); t.insertion(10); t.insertion(11); t.insertion(15); t.insertion(16); t.insertion(17); t.insertion(18); t.insertion(20); t.insertion(23); cout << "The B-tree is: "; t.traverse(); t.deletion(20); cout << "The B-tree is: "; t.traverse(); )
Raderingskomplexitet
Bästa fallet Tidskomplexitet: Θ(log n)
Genomsnittligt fall Rumskomplexitet: Θ(n)
Värsta fall Rymdkomplexitet: Θ(n)